Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Alireza Haghiri, Hans-Wolfram Lerner and Michael Bolte*

Institut für Anorganische Chemie, J. W. GoetheUniversität Frankfurt, Marie-Curie-Str. 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{O}-\mathrm{C})=0.003 \AA$
R factor $=0.036$
$w R$ factor $=0.091$
Data-to-parameter ratio $=20.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

Redetermination of di- μ-bromo-bis[tetracarbonylmanganese(I)] at low temperature

The structure of the title compound, $\left[\mathrm{Mn}_{2} \mathrm{Br}_{2}(\mathrm{CO})_{8}\right]$, has previously been determined at room temperature using film data [Dahl \& Wei (1963). Acta Cryst. 16, 611-616]. The 100 K structure reported here is in good agreement with the previous study but of significantly higher precision.

Comment

Following the first synthesis of a transition metal carbonyl complex, considerable progress has been made towards extending this area of chemistry (Holleman-Wiberg, 1995). Earlier studies have shown that the carbonyl halides of manganese $\left[\mathrm{Mn}(\mathrm{CO})_{5} X\right](X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ undergo thermal dissociation of coordinated carbon monoxide to give bis[halotetracarbonylmanganese(I)] (Brimm et al., 1954). We now have found that storing manganese pentacarbonyl bromide $\left[\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}\right]$ dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ in vacuo leads also to the formation of the the title dimeric manganese complex, $\left[\mathrm{Mn}(\mathrm{CO})_{4} \mathrm{Br}\right]_{2}$, (I), (Fig. 1).

(I)

The structure of (I) was first determined at room temperature using film data from Weissenberg exposures (Dahl \& Wei, 1963). The present low-temperature determination yielded results of significantly improved precision (e.g.: the s.u.'s for the $\mathrm{Mn}-\mathrm{Br}$ bonds decrease from 0.009 and 0.010 to $0.0005 \AA$, the s.u.'s for the $\mathrm{Mn}-\mathrm{C}$ bonds decrease from 0.04

Figure 1
View of (I), showing 50% displacement ellipsoids.

Received 16 February 2006
Accepted 16 February 2006
and 0.05 to $0.003 \AA$). The improved precision helps to emphasize the difference between the $\mathrm{Mn}-\mathrm{C}$ bond length trans to Br (mean value $1.887 \AA$) and trans to C (mean value $1.814 \AA$) (Table 1). The $\mathrm{C}-\mathrm{O}$ bonds, on the other hand, show an inverse behaviour: those trans to Br (mean value $1.144 \AA$) are longer that those trans to C (mean value $1.134 \AA$). Both Mn atoms are octahedrally coordinated by four CO groups and two Br atoms bridging two Mn atoms. The molecule has chemical but not crystallographic $D_{2 h}$ symmetry.

Experimental

$\left[\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}\right](0.036 \mathrm{~g}, 0.13 \mathrm{mmol})$ and $1 \mathrm{ml} \mathrm{CD} 2 \mathrm{Cl}_{2}$ were stored in a sealed and evacuated NMR tube for several days at rom temperature. Orange crystals of (I) suitable for X-ray diffraction were grown from this solution.

Crystal data

$\left[\mathrm{Mn}_{2} \mathrm{Br}_{2}(\mathrm{CO})_{8}\right]_{2}$
$M_{r}=493.78$
Monoclinic, $P 2_{\mathrm{f}} / c$
$a=9.4545(7) \AA$
$b=11.5713(8) \AA$
$c=12.6818(9) \AA$
$\beta=10.148(6)^{\circ}$
$V=1310.64(16) \AA^{3}$
$Z=4$

Data collection

STOE IPDS II two-circle	3694 independent reflections
\quad diffractometer	3267 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.070$
Absorption correction: multi-scan	$\theta_{\max }=29.7^{\circ}$
$\quad($ MULABS; Spek, 2003; Blessing,	$h=-13 \rightarrow 13$
$1995)$	$k=-16 \rightarrow 16$
$T_{\min }=0.160, T_{\max }=0.225$	$l=-17 \rightarrow 17$
20694 measured reflections	

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0606 P)^{2} \\
&+0.3697 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.16 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.38 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Mn} 1-\mathrm{C} 3$	$1.807(3)$	$\mathrm{Mn} 2-\mathrm{C} 6$	$1.813(3)$
$\mathrm{Mn} 1-\mathrm{C} 2$	$1.820(3)$	$\mathrm{Mn} 2-\mathrm{C} 7$	$1.815(3)$
$\mathrm{Mn} 1-\mathrm{C} 4$	$1.884(3)$	$\mathrm{Mn} 2-\mathrm{C} 5$	$1.878(3)$
$\mathrm{Mn} 1-\mathrm{C} 1$	$1.892(3)$	$\mathrm{Mn} 2-\mathrm{C} 8$	$1.895(3)$
$\mathrm{Mn} 1-\mathrm{Br} 2$	$2.5296(5)$	$\mathrm{Mn} 2-\mathrm{Br} 1$	$2.5215(5)$
$\mathrm{Mn} 1-\mathrm{Br} 1$	$2.5315(5)$	$\mathrm{Mn} 2-\mathrm{Br} 2$	$2.5230(5)$
$\mathrm{Mn} 2-\mathrm{Br} 1-\mathrm{Mn} 1$	$95.533(16)$	$\mathrm{Mn} 2-\mathrm{Br} 2-\mathrm{Mn} 1$	$95.543(17)$

The highest peak and deepest hole in the final difference map are located 0.80 and $0.78 \AA$, respectively, from atom Br 2 .
Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X - $A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Brimm, L., Lynch, M. A. \& Sesny J. (1954). J. Am. Chem. Soc. 76, 3831-3835. Dahl, L. F. \& Wei, C.-H. (1963). Acta Cryst. 16, 611-616.
Holleman-Wiberg (1995). Lehrbuch der Anorganischen Chemie, pp. 16291655. 101. Aufl. Berlin: de Gruyter.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.

